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Abstract: In this paper we present a modified algorithm which integrates artificial bee colony (ABC) algorithm 

with adaptive guidance adjusted for constrained engineering optimization problems. The novel algorithm 

improves best found solutions in some cases and improves robustness i.e. mean value and variance for number 

of runs in other cases by improving the algorithm’s exploitation/exploration balance. Even though scout bee 

phase is used for exploration, we introduced adaptive parameter that at different stages of the algorithm 

narrows search space facilitating faster convergence. We tested our algorithm on four standard engineering 

benchmark problems. The experimental results show that our modified algorithm can outperform the pure ABC 

algorithm in most cases. 
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1 Introduction 
1Different mathematical programming techniques 

like linear programming, method of feasible 

direction, dynamic programming and geometric 

programming have been used to solve hard 

optimization problems. These methods do not reach 

satisfactory results on wide range of optimization 

problems. Numerous constraints make optimization 

problems complicated and hence these techniques 

are not ideal for solving such problems as they tend 

to converge to a local optimal solution. Nature 

inspired algorithms have been gaining much 

popularity in recent years due to the fact that many 

real-world optimization problems have become 

increasingly large, complex and dynamic. In many 

situations development of an exact and good 

performance algorithm cannot be guaranteed. The 

size and complexity of the problems nowadays 

require the development of methods and solutions 

whose efficiency is measured by their ability to find 

acceptable results within a reasonable amount of 

time, rather than an ability to guarantee the optimal 

solution [1]. These methods use the fitness informa-

tion instead of the functional derivatives making 

them more robust and effective. 

                                                 

This research is supported by Ministry of Science, Republic 

of Serbia, Project No. III-44006 

A branch of nature inspired algorithms which are 

called swarm intelligence is focused on insect 

behavior in order to develop some meta-heuristics 

which can mimic insect’s problem solution abilities 

[2], [3], [4], [5]. Formally, a swarm can be defined 

as a group of agents which communicate with each 

other either directly or indirectly. Within these 

groups, individuals are not aware of the global 

behavior of the group. Swarm intelligence is a 

heuristic method that models the population of 

entities that are able to self-organize and interact 

among them [6], [7]. 

The following structure of nature systems can be 

converted into an appropriate mathematical model 

to solve complex problems of finding the optimal 

solution [8]: 
 

1. System contains large numbers of relatively 

simple participants. 

2. System is completely decentralized. 

3. System operates in parallel and 

asynchronously. 

4. System uses relatively simple signals. 

5. System's desired functionality emerges from 

the interactions of their participants. 
 

Optimization algorithms are capable of finding 

optimal solutions for numerous test problems for 

which exact and analytical methods do not produce 
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optimal solutions within a reasonable computational 

time. Their ability to provide many near-optimal 

solutions at the end of an optimization run enables 

to choose the best solution according to given 

criteria.  

The artificial bee colony (ABC) algorithm is a 

metaheuristic optimization technique that mimics 

the process of food foraging of honeybees. 

Originally the ABC algorithm was developed for 

continuous function optimization problems, but it 

can also be successfully applied to various other 

optimization problems. 

 A majority of industrial engineering optimization 

problems are constrained problems. The presence of 

constraints significantly affects the performance of 

any optimization algorithm.  Michalewicz and Fogel 

[9] describe the following characteristics that make 

it difficult to solve an optimization problem in the 

real world: 
 

1. The number of possible solutions (search space) 

is too large. 

2.  The problem is so complicated that, with the 

aim of obtaining a solution, simplified models 

of the same problem must be used. Thus, the 

solution may not be useful. 

3. The evaluation function that describes the quality 

of each solution in the search space varies over 

time or it has noise. 

4.  Possible solutions are highly restricted, making 

it difficult even generating at least one feasible 

solution (i.e., satisfy the constraints of the 

problem). 
 

The constrained optimization problem can be 

represented as the following nonlinear programming 

problem [10], [11]: 
 

   minimize f(x), x=(x1, …, xn)  R
n
     (1) 

 

where x FS. The objective function f is defined 

on the search space SR
n
 and the set FS defines 

the feasible region. Usually, the search space S is 

defined as an n-dimensional rectangle in R
n
 

(domains of variables defined by their lower and 

upper bounds): 
 

 lbi ≤ xi ≤ ubi,     1 ≤ i ≤ n  (2) 
 

the feasible region FS is defined by a set of m 

additional constraints: 
 

gj(x) ≤ 0, for j = 1, . . . , q 
 

hj(x) = 0, for j = q + 1, . . .,m.  (3) 
 

 

Although the original ABC algorithm is a well-

performing optimization algorithm, we have noticed 

that the solution search method of the ABC 

algorithm can be improved by better guided 

exploration. In order to improve the exploration 

phase we decided to use the information of the 

global best solution and the current best solution in 

the process of producing new candidate solution in 

the scout phase rather than random approach. It 

should be pointed out that the use of global best 

solution has also been utilized by DE and PSO 

algorithms [12], [13]. 

 In this paper, we present enhancements of the 

artificial bee colony algorithm proposed by 

Karaboga and Basturk  [14]. The organization of the 

remaining paper is as follows. Section 2 details the 

original ABC algorithm; Section 3 describes the 

basic theory of the constrained optimization. In 

Section 4 our modification is proposed and 

explained in detail. In Section 5 well-known 

constrained engineering problems are discussed and 

in Section 6 comparison experiments on the 

engineering optimization problems are performed to 

verify efficiency of our proposed approach over the 

traditional ABC algorithm. Our conclusions and 

future work are contained in the final Section 7. 

 

 

2 Pure ABC algorithm 
The foraging behavior, learning, memorizing and 

information sharing characteristics of honeybees 

have recently been one of the most interesting 

research areas in swarm intelligence. In the ABC 

algorithm, the colony of artificial bees contains 

three groups of bees: employed bees, onlookers and 

scouts. The number of employed bees is equal to the 

number of food sources and an employed bee is 

assigned to one of the sources. In the ABC 

algorithm, while onlookers and employed bees carry 

out the exploitation process in the search space, the 

scouts control the exploration process.  The scouts 

are characterized by low search costs and a low 

average in food source quality [14]. In the ABC 

algorithm, the position of a food source represents a 

possible solution to the optimization problem and 

the nectar amount of a food source corresponds to 

the quality (fitness) of the associated solution. An 

important difference between ABC and other swarm 

intelligence algorithms is that in the ABC, the 

solutions of the problem are represented by the food 

sources, not by the bees. The food source which is 

abandoned by the bees is replaced with a new food 

source by the scouts which involves calculating a 

new solution at random. The employed bee of an 

abandoned food source becomes a scout. An 

onlooker bee chooses a food source depending on 
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the probability value associated with that food 

source, pi, calculated by the following expression 
 





SN

n

n

i
i

fit

fit
p

1

   (4) 

where fiti is the fitness value of the solution i which 

is proportional to the nectar amount of the food 

source in the position i. 

In order to produce a candidate food solution 

from the old one in memory, the ABC uses the 

following expression 
 

)( ,,,,, jkjijijiji xxx     (5) 
 

where k  {1, 2,.., SN} and j  {1, 2,...,D} are 

randomly chosen indexes. If a solution cannot be 

improved further through a predetermined number 

of cycles, the food source will be abandoned. The 

value of predetermined number of cycles, limit,  is 

an important control parameter of the ABC 

algorithm [14]. There are three main control 

parameters used in the ABC: the number of food 

sources which is equal to the number of employed 

or onlooker bees (SN), the value of limit, and the 

maximum cycle number. There are software 

systems for ABC algorithm [15], as well as 

paralelized versions [16]. 

 

 

3 Constrained optimization problems 
Constrained optimization problems are encountered 

in numerous applications. The complexity of the 

constrained optimization problems steams from the 

fact that desired solution must satisfy all the 

constraints. During the initialization phase most of 

the metaheuristic methods start with solutions that 

can be outside of the feasible area and it is expected 

that through the algorithm iterations solutions reach 

the feasible area. The handling of equality 

constraints can be considered as one of the main 

difficult issues in solving constrained optimization 

problems; their existence makes the feasible space 

very small compared to the entire search space [10]. 

To expand the feasible area and provide larger 

number of eligible solutions in the initial stage of 

the algorithm, the equality constraints are usually 

transformed to inequality constraints 
 

   0)( xh    (6) 
 

for some small violation value >0 [17]. The 

consequences of choosing too small or too large 

tolerance value  lead to poor performance of the 

algorithm; the results may be too far from the 

feasible region.  

Hamida and Schoenauer have proposed a 

strategy for handling equality constraints [18] which 

combines dynamic adjustment and adaptive 

adjustment. The idea is to start with a large violation 

value , which provides the exploration of the whole 

search space S. The  value is then gradually shrunk 

along iterations, to approach the optimum region. 

These adjustments might not provide solutions with 

high quality; hence some solutions can be slightly 

infeasible due to  tolerance .  

Parameter  can be defined as follows: 
 

  
dec

t
t

)(
)1(


     (7) 

 

where t is the current iteration and dec is the 

decreasing rate value of each iteration [19], [20]. 

Value of the parameter dec must be greater than 1. 

The idea is to start with a larger search space than 

the original one, and through the algorithm 

iterations the tolerance will be reduced with each 

iteration, thus the constraint violation of current 

solutions will be lower than those of solutions 

calculated in the previous iteration [21], [22].   

 The first proposal to extend the ABC algorithm 

[14] to constrained problems used a constraint 

handling technique originally proposed for a genetic 

algorithm by Deb [23], [24]. Penalty function 

method is the most common approach in handling 

constraints. By adding a penalty term to the 

objective function, a constrained optimization 

problem is transformed into an unconstrained one. 

Based on the penalty function method, Deb has 

developed a constraint handling approach which 

does not require any penalty parameter. Deb’s 

method uses a tournament selection operator, where 

two solutions are compared at a time, and the 

following criteria are always enforced: 
 

1. Any feasible solution is preferred to any 

infeasible solution,  

2. Among two feasible solutions, the one having 

better objective function value is preferred,  

3. Among two infeasible solutions, the one having 

smaller constraint violation is preferred. 
 

In order to adapt the ABC algorithm Karaboga has 

accepted Deb’s constrained handling method instead 

of the selection process (greedy selection) of the 

ABC algorithm. Pseudo-code [2] for the ABC 

algorithm for constrained optimization problems is:  

1. Initialize the population of solutions 

2. Evaluate the population 
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3. cycle=1 

4. repeat 

5. Produce new solutions for the employed bees by 

using Eq. (8) and evaluate them 
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6. Apply selection process based on Deb’s method  

7. Calculate the probability values Pi,j for the 

solutions xi,j using fitness of the solutions and 

the constraint violations (CV) by Eq. (9)  
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           where CV is defined by Eq. (10) 
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8. For each onlooker bee, produce a new solution 

υi by (4) in the neighborhood of the solution 

selected depending on pi and evaluate it 

9. Apply selection process between υi and xi based 

on Deb’s method 

10. Determine the abandoned solutions by using 

“limit” parameter fr the scout. If it exists, 

replace it with a new randomly produced 

solution by step 5 

  
)(*)1,0( minmaxmin

jjjj

i xxrandxx 
    (11)

 

11. Memorize the best solution achieved so far 

12. cycle = cycle+1 

13.  until cycle = MCN 
 

Some recent research on modifications to the 

ABC algorithm for constrained problems is in [25], 

[26], [27], [28].   
 

 

4 Adjusted ABC algorithm 
Two major components of any metaheuristic 

algorithms are exploitation and exploration. 

Exploration means to explore the search space on 

the global scale, while exploitation focuses on the 

search in a local region.  It is well known that both 

exploration and exploitation should be well 

balanced in any population-based optimization 

algorithm [29], [30]. 

In the ABC algorithm, the process of replacing 

abandoned food source is simulated by randomly 

producing a new solution, as defined by Eq. (5). 

Also,  new solutions in the scout phase of the ABC 

algorithm are not based on the information of 

previous solutions or the global best solution. In 

practice, we noticed that after a certain number of 

cycles, solutions will approach the optimum value, 

hence the use of random solution given by Eq. (5) 

will be a step backwards. Combination of global and 

local search is one of the main aspects in the 

research on constrained optimization problems [29]. 

Inspired by original proposal in SAVPSO [13] and 

related works [19], [21], [22], [31] we modified the 

solution search equation by applying the global best 

solution and limited solution to guide the search of 

scout in order to improve the exploration. Latest 

addition to this research are [32], [33]. To handle 

constraints, in SAVPSO authors adopt their 

proposed dynamic-objective constraint-handling 

method. 
 The following three characteristics of the feasible 

region, which can be considered as some kind of 

knowledge about the feasible region, are responsible 

for the impact on the search behavior of the particles 

[13]: 
 

1. The position of the feasible region with 

respect to the search space; 

2. The connectivity and the shape of the 

feasible region; 

3. The ratio |F|/|S| of feasible region to the 

search space. 
 

According to the characteristics above, in SAVPSO, 

the swarm is manipulated according to the following 

self-adaptive velocity equations: 
 

 

    vid(t+1) = ω|pi’d(t)-pid(t)|sign(vid(t))  +        (12) 
 

                  + r(pid(t) - xid(t)) + (1-r)(pgd(t)-xid(t)) 
 

    xid(t+1) = xid(t) + vid(t+1) 
 

where r ∈ U[0, 1], i’∈ intU[1, N], ω is a scaling 

parameter, and sign(vid (t)) is the sign of vid (t). The 

self-adaptive velocity formula consists of three 

parts. The first part is velocity of the particle. The 

second part is the “cognitive” part which represents 

personal thinking of itself - learning from its own 

flying experience. The third part is the “social” part 

which represents the collaboration among particles -

learning from group flying experience [13].  

 In the original ABC algorithm in the scout phase 

a new solution is generated by using random ap-

proach, thus it is very difficult to generate a new 

solution that could be placed in the promising region 
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of the search space. Our modified algorithm uses a 

different approach based on proposal utilized in 

[13]. Instead of generating a random solution based 

on Eq. (5), the scout will generate a new solution 

depending on the algorithm’s stage. In the early 

stages of the algorithm’s progress (less than 75%) a 

scout will generate a new solution by adding the 

global experience information (xbest,j - the best global 

food source) to Eq. (5). A new solution will be 

generated by using information about the food 

source that is abandoned, the best global food 

source and a randomly chosen food source as stated 

in Eq. (13): 
 

 

 
)(*)1()(* ,,,,,, jbestjijkjijiji xxxxx  
   (13)

 
 

When algorithm reaches the final stage of its 

execution (more than 75%), a scout will generate a 

new solution by adding the limited solution xlim  to 

Eq. (13). 
 

       
)(*)1()(* ,,lim,,,, jbestjijjijiji xxxxx  
     (14)

 

 

The limited solution is calculated as follows. For 

each xlimi where  i  {1, 2,...,D} we determine the 

minxj and the maxxj where j  {1, 2,...,SN} as lower 

and upper bounds in the current cycle for xlim. Then, 

we generate xlimi  randomly between new lower and 

upper bounds for each cycle. 

The proposed modification will increase the 

capabilities of the ABC algorithm to produce new 

solutions located near the boundaries of the feasible 

region or if the best solution is feasible in the 

promising region by choosing direction based on the 

best global food source. By adding the limited 

solution to Eq. (13) algorithm performs fine tuning 

in the global best solution area. This modification 

does not change the computational complexity of 

the algorithm. 

 

 

5 Engineering optimization problems 
In the case of the complex engineering problem, the 

structure of the problem is often unknown. The 

quality of the certain parameter setting can often 

only be evaluated by experiments or simulations. In 

order to study the performance of solving the real-

world engineering design problems, the proposed 

method is applied to 4 well-known constrained 

engineering problems: Pressure vessel, tension/ 

compression spring, speed reducer and welded 

beam. The number of linear and nonlinear inequality 

constraints of the problems is given in Table 1. 

For constrained optimization problems, no 

single parameter (number of linear, nonlinear, active  
 

Problem LI NI 

Pressure vessel 3 1 

Tension/comp. spring 1 3 

Speed reducer 4 7 

Welded beam 2 5 
 

Table 1: Number of linear and nonlinear inequality 

constraints 
 

function, number of variables) is proved to be 

significant as a major measure of difficulty of the 

problem.  

The pressure vessel problem is to design a 

compressed air storage tank with a working pressure 

of 3000 psi and a minimum volume of 750 ft
3
. A 

cylindrical vessel (Fig. 1) is capped at both ends by 

hemispherical heads. Using rolled steel plate, the 

shell is made in two halves that are joined by the 

longitudinal welds to form a cylinder. The objective 

is to minimize the total cost of material, forming and 

welding of a cylindrical vessel. The four design 

variables are x1 (thickness of the shell), x2 (thickness 

of the head), x3 (inner radius R) and x4 (length of the 

cylindrical section of the vessel, not including the 

head). x1 and x2 are to be in integral multiples of 

0.0625 inch which are the available thicknesses of 

rolled steel plates. The radius x3 and the length x4 

are continuous variables.   
 

Problem 1: the pressure vessel problem 
 

 min f(X) = 0.6224x1x3x4 + 1.7781x2x3
2
 + 

3.1661x1
2
 x4 +19.84x1

2
x3 

subject to   

 g1(X) : -x1 + 0.0193x3 ≤ 0 

 g2(X) : -x2 + 0.00954 ≤ 0 

 g3(X) : -πx3
2
x4 – 4/3πx3

3
+ 1296000 ≤ 0 

 g4(X) : x4 − 240 ≤ 0 
 

where X = (x1, x2, x3, x4)
T
. The ranges of the design 

parameters are 0 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200. 

Best solution: x* = (0.8125, 0.4375, 42.098446, 

176.636596) where f(x*) = 6059.714335. 

 

Fig. 1: Pressure vessel design 
 

The tension/compression spring problem 
deals with minimizing of the weight of the tension/ 

compression spring subject to constraints on the 

minimum deflection, shear stress, surge frequency, 

diameter and design variables. This problem has a 
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nonlinear objective function, a linear and three 

nonlinear inequality constraints. There are three 

continuous variables: the wire diameter x1 , the 

mean coil diameter x2 , and the number of active 

coils x3 . 
 

Problem 2: The tension/compression spring 

problem 

 min f (X) = (N + 2)Dd
2
 

subject to   

 g1(X) : 
       

       

 
≤ 0 

 g2(X) : 
      

             
 + 

 

         ≤ 0 

 g3(X) : 1 – 
       

    ≤ 0 

 g4(X) : 
   

   
    ≤ 0 

 
where X = (d, D, N)

T
, 0.05 ≤ d ≤ 2.0, 0.25 ≤ D ≤ 1.3, 

2.0 ≤N ≤ 15.0 Best solution is f (x*)= 0.012665, 

where x*= (0.051690,0.356750,11.287126).  

 

 
Fig. 2: Tension/compression spring 

 

The aim of the speed reducer design is to 

minimize the weights of the speed reducer subject to 

constraints on bending stress of the gear teeth, 

surface stress, transverse deflections of the shafts 

and stresses in the shafts. The design of the speed 

reducer, is considered with the face width x1, 

module of teeth x2, number of teeth on pinion x3, 

length of the first shaft between bearings x4 , length 

of the second shaft between bearings x5 , diameter of 

the first shaft x6 , and diameter of the first shaft x7. 

All variables are continuous except x3 that is integer. 

Speed reducer problem has seven nonlinear and four 

linear constraints. 
 

Problem 3: Speed reducer 
 

min f (X) = 0.7854x1x2
2
 (3.3333x3

2
+ 14.9334x3 

− 43.0934)−1.508x1(x6
2
+ x7

2
) + 7.4777(x6

3
+ x7

3
) 

 subject to  

 g1(x):  
  

    
   

 ≤ 0 

 g2(x):  
     

    
   

  - 1≤0 

 g3(x): 
      

 

      
  – 1 ≤0 

 g4(x): 
      

 

      
  – 1 ≤0 

 g5(x): 
  

     
    

                

     
   - 1 ≤0 

 g6(x): 
  

     
    

              
 
 

    
  – 1 ≤0 

 g7(x): 
    

  
 - 1≤0 

 g8(x): 
   

  
  - 1 ≤ 0 

 g9(x): 
  

    
 - 1≤0 

 g10(x): 
         

  
 - 1≤0 

 g11(x): 
         

  
 - 1≤0 

 

where the bounds are: 2.6 ≤x1≤ 3.6 , 0.7 ≤ x2 ≤ 

0.8 , 17≤ x3 ≤ 28, 7.3≤ x4 ≤ 8.3 , 7.8 ≤ x5 ≤ 8.3, 

2.9 ≤ x6 ≤ 3.9, and 5.0 ≤ x7 ≤ 5.5. Best solution 

is f (x*)= 2996.348165, where  

x*= (3.5, 0.7, 17, 7.3, 7.8, 3.350214, 5.286683). 
 

 
 

Fig. 3: Speed reducer 
 

Welded beam design problem is a standard 

test problem for constrained design optimization. 

The problem aims to minimize the cost of beam 

subject to constraints on shear stress, τ, bending 

stress in the beam, σ, buckling load on the bar, Pc, 

end deflection of the beam, δ, and side constraints. 

Welded beam design is illustrated in Fig. 4. This 

problem consists of a nonlinear objective function, 

five nonlinear and two linear inequality constraints. 

The solution is located on the boundaries of the 

feasible region.  
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Problem 4: Welded beam 
 

min f (X) = 1.10471x12 x2 + 0.04811x3x4(14.0 + x2) 

subject to: 

g1(x): (x) - max ≤ 0 

g2(x): (x) -  max ≤ 0 

g3(x): x1-x4 ≤ 0 

g4(x): 0.10471x1
2
 + 0.04811x3x4(14.0 + x2) −5.0 ≤ 0 

g5(x): 0.125-x1≤ 0 

g6(x): (x) - max ≤ 0 

g7(x): P-Pc(x)≤ 0 

where (x) = ,2)''(
2

2'''22)'(  
R

x  

' = 

212 xx

P
, '' = 

J

MR , 
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where P=6000 lb., L=14 in, δmax = 0.25 in, E = 30 

× 10
6
 psi, G = 12 × 106 psi, τmax = 1, 3600 psi , σmax 

= 

3,0000 psi, X = (x1, x2, x3, x4)
T
, 0.1 ≤ x1, x4 ≤ 2.0, 

0.1 ≤ x2, x3 ≤ 10.  

 
Fig. 4: Welded beam problem 

 

 

6 Parameter settings and results 

The performance of our modified algorithm was 

compared with the original ABC algorithm [34], 

particle swarm optimization (PSO) [35] and the 

evolution strategy [36]. We performed 30 indepen-

dent runs per problem. Our algorithm used the same 

parameters’ values as the original ABC algorithm: 

Swarm Size = 30, Maximum cycle number = 1000, 

Modification rate = 0.9. 

 The values of the algorithm-specific control 

parameters are listed in Table 2. The best and mean 

values with standard deviations are reported in 

Table 3. Comparisons show that our algorithm 

outperforms or performs similarly to three state-of-

the-art approaches in terms of the quality of the 

resulting solutions. From the results, it can be 

concluded that our adjusted algorithm is a promising 

ABC modification for optimizing constrained 

engineering problems. Tables 3, 4, 5 and 6 show the 

solution vectors of the best solution reached by our 

algorithm and the values of the constrains for each 

of the problems tested. 

 

 

PSO  (μ+λ)ES  ABC  ourABC  

SS 30  15 CSabc 30 CSabc 30 

MNG 1,000  100 MCN 1,000 MCN 1,000 

 0.8 Sr 0.97 MR 0.9 MR 0.9 

c1 0.5 MGN 300 SPP 400 Limit MCN/(2*CSabc) 

c2 0.5 LR 1)2(  n

  1
2'


 n  

Limit CSabc*D*5   

  MSS  nixi /4.0)0(       

 

Table 2. The values of the control parameters of the algorithms: SS Swarm size, MGN Maximum generation 

number, ω inertia, c1 cognitive component, c2 social component, Sr Selection ratio, LR Learning rate, MSS 

Mutation step size, CSabc Colony size, MCN Maximum cycle number, SPP Scout production period, MR 

Modification rate 
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Problem Stats. PSO (μ + λ)-ES ABC ourABC 

Pressure vessel Best  6059.714 6059.701 6059.714 6059.714 

 Mean 6289.928 6379.938 6245.308 6218.515 

 St. Dev 3.1E+02 2.1E+02 2.05.E+02 1.9 E+02 

Ten/comp. spring Best 0.0126 0.0126 0.0126 0.0126 

 Mean 0.012 0.013 0.0127 0.0127 

 St. Dev 4.1E-05 3.9E-04 1.28E-4 2.8E-4 

Speed reducer Best NA 2996.348 2997.058 2996.783 

 Mean NA 2996.348 2997.058 2996.783 

 St. Dev NA 0.000 0.000 0.000 

Welded beam Best NA 1.724 1.724 1.724 

 Mean NA 1.777 1.741 1.763 

 St. Dev NA 0.088 0.031 0.033 
 

Table 3. Statistical results of the PSO, (μ + λ)-ES, ABC and ourABC algorithms 
 
 

 

 Best Solution 

x1 3.4999 

x2 0.6999 

x3 17.0000 

x4 7.3000 

x5 7.8000 

x6 3.3502 

x7 5.2872 

g1(x) -0.0739 

g2(x) -0.1979 

g3(x) -0.4991 

g4(x) -0.9015 

g5(x) 0.0000 

g6(x) 0.0000 

g7(x) -0.7025 

g8(x) 0.0001 

g9(x) -0.5833 

g10(x) -0.0513 

g11(x) -0.0106 

f(x) 2996.783 

Table 4. Parameter and constraint values of the best 

solutions obtained for pressure speed reducer 

 

 

 Best Solution 

x1 0.8125 

x2 0.4375 

x3 42.0985 

x4 176.6366 

g1(x) 0.0000 

g2(x) -0.03588 

g3(x) -0.00003 

g4(x) -63.3634 

f(x) 6059.714 
 

Table 5. Parameter and constraint values of the best 

solutions obtained for pressure vessel problem 

 

 

 Best Solution 

x1 0.051749 

x2 0.3581 

x3 11.2015 

g1(x) -0.0002 

g2(x) 0.0000 

g3(x) -4.0618 

g4(x) -0.7246 

f(x) 0.0127 
 

Table 6. Parameter and constraint values of the best 

solutions for tension/compression spring problem 

 

 

 Best Solution 

x1 0.2057 

x2 3.4705 

x3 9.0366 

x4 0.2057 

g1(x) 0.0000 

g2(x) 0.0000 

g3(x) 0.0000 

g4(x) -3.4329 

g5(x) -0.0807 

g6(x) -0.2355 

g7(x) 0.0000 

f(x) 1.724 
 

Table 7. Parameter and constraint values of the best 

solutions obtained for welded beam problem 

 

 

7 Conclusion 
A new method is introduced in this paper, which 

improves the performance of the ABC algorithm by 

incorporating adaptive scout behavior modification. 

The approach obtains competitive results on 4 well-

known constrained engineering problems. From the 
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comparative study our modified algorithm has 

shown its potential to handle various constrained 

problems and its performance is better or similar to 

the original ABC algorithm, so we can conclude that 

this mechanism does improve the robustness of the 

ABC.  

 The results obtained in this paper provide an 

understanding and improvement of the search 

mechanism of the ABC algorithms for the 

constrained optimization problems. Several 

directions need to be explored in the future work 

like evaluating the modifications of the improved 

algorithm on the other optimization problems and 

performing a more detailed statistical analysis of the 

performance of our proposed approach. Also, a 

constriction factor from the PSO algorithm 

incorporated in our adjusted ABC algorithm may 

introduce further performance improvement. 
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